Interactive Visualization of Fluid Dynamics Simulations
in Locally Refined Cartesian Grids

Martin Schulz ** Frank Reck

Wolf Bartelheimer |

Thomas Ertl *

* University of Stuttgart, IfI, Visualization and Interactive Systems Group
t BMW AG
t University of Erlangen, IMMD IX, Computer Graphics Group

Abstract

This work presents interactive flow visualization techniques specif-
ically adapted for PowerFLOWTM _ a lattice-based CFD code from
the EXA corporation. Their Digital Physics™ fluid simulation
technique is performed on a hierarchy of locally refined cartesian
grids with a fine voxel resolution in areas of interesting flow fea-
tures. Among other applications the PowerFLOW solver is used
for aerodynamic simulations in car body development where the ad-
vantages of automatic grid generation from CAD models is of great
interest. In a joint project with BMW and EXA we are developing a
visualization tool which incorporates virtual reality techniques for
the interactive exploration of the large scalar and vector data sets.
In this paper we describe the specific data structures and interpo-
lation techniques and we report on fast particle tracing taking into
account collisions with the car body geometry. An OpenGL Opti-
mizer based implementation allows for the inspection of the flow
with particle probes and slice probes at interactive frame rates.

Keywords: Computational fluid dynamics, interactive flow visu-
alization, locally refined cartesian grids, virtual environment

1 Motivation and related work

Computational fluid dynamics (CFD) is becoming increasingly im-
portant for the evaluation of car body design concepts in the vehicle
development process. Commonly used simulation applications are
based upon the Navier-Stokes equation and use the finite volume
method to numerically solve the partial differential equations. The
finite volumes are organized in curvilinear or unstructured grids that
fit the car body surface. The process to make the cell faces match
the surface is the most time-consuming problem in grid generation.
Complex surface structures of vehicles lead to grid generation times
of up to several weeks.

Competition' and reduced model cycles require the iteration
loops during the vehicle development process to be as short as pos-
sible. Therefore, keeping the simulation model up to date with the
designed surface changes requires a fast generation of the simula-
tion grids. The more variants the designer is able to check the better
should be the'result of the optimization steps. This is in contrast to
the efforts involved in regenerating a new grid structure for finite
volume methods after only small vehicle surface modifications.

A promising way to speed up the grid generation is to use the
Lattice Gas or Lattice Boltzmann methods to solve the flow prob-
lems. In this case the underlying grids are usually cartesian with an

* Institut fiir Informatik, Abteilung fiir Visualisierung und Interaktive Systeme,

Breitwiesenstr. 20-22, 70565 Stuttgart, Germany,
Email: schulz@informatik.uni-erlangen.de,
t BMW AG, 80788 Miinchen, Germany,
Email: wolf.bartelheimer@bmw.de
Lehrstuhl fiir Graphische Datenverarbeitung IMMD IX,
Am Weichselgarten 9, 91058 Erlangen, Germany,

413

additional explicit description of the vehicle surface. These grids
can be generated automatically from the CAD representation of
the car geometry and they can be refined in interesting regions.
Thereby, a fast regeneration of the grid after small design changes
is guaranteed.

PowerFLOW is lattice-based flow code developed by EXA
which uses a special simulation technology called Digital Physics.
The grids of PowerFLOW consist of locally refined cartesian grids.
At interesting regions, defined by the engineer, the voxel size is suc-
cessively cut into halves allowing for a fine resolution of interesting
flow features. BMW is presently evaluating this software for the
simulation of air flow around a car body by comparing their results
with measurements taken in a wind tunnel. Introducing this soft-
ware into the productive development process increases the strong
demand for an interactive visualization tool.

Advanced interactive visualization techniques are needed to ana-
lyze the large amount of data generated by such simulations. How-
ever, existing visualization tools for curvilinear or unstructured
meshes cannot be used for the data sets generated by PowerFLOW.
Thus, our goal is to adapt known visualization methods to the spe-
cial requirements of the locally refined cartesian grids. Specifically,
we will show how the basic algorithms for cell location and in-
terpolation have to be modified. The combination of volume data
and geometric data also requires new techniques to handle particle
tracing. The application developed at the University of Erlangen in
cooperation with BMW and EXA aims at interactive performance
in virtual environments. Therefore, special attention is paid to the
positioning and manipulation of visualization probes as well as to
the optimization of rendering performance.

In this respect we are guided by the pioneering work of Bryson
[1] who demonstrated the usefulness of virtual reality techniques
for fluid dynamic visualization in the virtual wind tunnel project.
Furthermore, we rely on research results from the flow visualization
community [4, 3, 6] and we try to include experiences from other
case studies describing flow visualization environments [7].

2 Grid structure

The Lattice Gas solution of EXA works on a cartesian grid with
several levels (called “VRlevel”) of different voxel sizes. A typical
simulation volume is a cube with a length of about 60 meters and a
voxel size of about 5 millimeters in the finest regions. In each of the
next higher levels the edge length of the voxels is doubled. These
regions (called “VRregion™) of a certain VRlevel are specified by
the engineer in a CAD description. Several VRregions can share
one VRlevel. An average simulation volume consists of about 20-
25 million voxels. In order to reduce the disk space requirements,
the average value of eight voxels is combined into one “measure-
ment cell” which defines the simulation parameters to be constant
across the entire cell. A more practical view is to define the param-
eter at the cell center. An average data set as stored on disk consists
of around 3 million measurement cells.

Voxels inside the vehicle are not relevant for the simulation and
do not contain any parameters. The vehicle geometry intersects sev-
eral voxels, which need special handling to allow particle tracing.
In figure 1 a grid structure example with two VRlevels is shown.
Obviously, not every voxel of an axis aligned refinement region has
to be split.

: i i i) i i i i
outside
x X X X x x x X
inside [N | * x x x x x x
|. X{X|X| x| X]x % < % x
x
r |§Y x| x| x| x}x N _
0 IE XY XX XIX]X]X)|X
Data points it \ x x x
!E xpx{x|x{x|x : ~
-E XiX|X|X]X]X
l: x X x
" X | X | X | X | x| X
- a A -
1 1 1]
1 1 1) 1 i 1 1 1 . 'I
Vehicle sucf 0 adl I CAD definition
enicle surlace --—-~ Refined region

Figure 1: Grid structure of a locally refined cartesian grid contain-
ing explicit geometry.

Figure 2: Example data set with locally refined regions

Figure 2 presents a data set with three VRlevels and nine VR-
regions. The VRlevel with the smallest cell size is cut into seven
VRregions. This example clarifies the interesting regions for re-
finement. They are located around the wheels, in front of the wind-
screen and at the front and back of the car.

Most visualization algorithms are built on cell location and inter-
polation as basic operations. Finding the enclosing cell to a given
position should be as fast as possible in order to achieve interactive
rates of visualization. For the described grid structure this means
traversing the hierarchy of VRlevels. In order to speed up this pro-
cess, a condition byte for each cell in each level is used to store the
following information:

o the cell contains parameters

o the cell is refined and which is the underlying VRregion

o the cell is intersected by surface geometry
This three-dimensional condition byte field is stored in addition to
the other cell parameters. Using this byte field an algorithm can be

found which is simple and fast compared to cell location in curvi-
linear grids (e.g. stencil walk) or unstructured grids:

414

start in the highest VRlevel

while(1){
calculate the cell index of the position in the grid:
index = (position - minimal grid bound) / cell size

if (cell has no parameters)
return no cell found
if (cell is refined)
continue with underlying VRlevel/VRregion
/* cell found */
return this cell

With respect to interpolation the data model with cell-centered
parameters, which are considered to be constant across the voxel
volume, implies that “nearest neighbour interpolation” is sufficient.

3 Particle tracing and collision detection

Particle tracing in stationary grids is known in different variants.
The commonly used integration method is the Runge Kutta scheme
of up to the 4th order. Better results than with fixed step size can
be achieved with adaptive step size control, i.e. with the embedded
3(2) or 4(3) Runge Kutta methods [5]. Since we have implementa-
tions of all these methods available, we let the user choose between
the different integration methods in order to get best performance
for a certain desired accuracy.

In curvilinear or unstructured grids the vehicle surface is implied
in the grid structure. If a particle hits the surface it just leaves the
grid. However, the grids considered in this work have an explicit
description of the vehicle surface (see figure 1). Particle traces near
the surface could cut through the surface and appear again at an-
other point, as shown on the left side in figure 3. Since this violates
the surface boundary condition, it would be better if the particle
path ends on the surface or if the particle tracing is continued in
close relationship to the surface.

‘I

Figure 3: Particle tracing without (left) and with (right) collision
detection on the car surface.

An average surface geometry consists of about 70.000 triangles.
Thus, it would not be efficient to check each particle step against all
triangles of the vehicle surface. In this work an octree has been im-
plemented to reduce the number of triangles that have to be checked
for a specific step to less then 20.

The octree is built as usual by dividing the whole cube into eight
smaller units with half the cell size. Regions with no geometry are
enclosed by a large octree cell, whereas cells containing geometry
areas are refined until the number of triangles in the octree cell falls
short of a minimum limit or the cell encloses only one voxel. Since
the octree cuboids share their edges with the grid structure, each
measurement cell of the grid is assigned to one octree cell. How-
ever, a triangle of the vehicle surface can be part of different cells,
because the triangle edges are in general not in parallel to the grid
axis. :

During the integration of the particle trace, all cells intersected
by a path have to be checked for intersection with the vehicle sur-
face. Without the condition byte field each cell has to be found in
the octree. Checking the condition-byte for geometry information
reduces the necessary octree tests to a minimum (figure 4). Only
the cells that are intersected by geometry have to be searched in the
octree. The traversal of the octree returns the triangles for inter-
section testing which is done by the Glassner algorithm [2], known
from ray tracing techniques. Figure 3 compares particle traces with
and without intersection test. In the left figure many particle traces
cut through the hood and appear again, whereas the intersection test
stops them at the surface, as shown in the right image.

]

X intersactio test rejected by the candition field

Figure 4: Particle trace intersecting the vehicle surface.

An average of ten triangles has to be checked for one cell. The
high-lighted triangles of figure 5/7 have been referenced for inter-
section tests. Only a very small number of the whole car surface is
used for the trace of one particle. The example of figure 5/7 clearly
demonstrates the requirement of the intersection test. First the par-
ticle flies close to the surface and finally hits the wheelhouse.

Figure 5: The high-lighted triangles had to be checked for collision
during the particle trace calculation.

Even more interesting is the collision detection for particles with

415

masses and size, e.g. dirt particles. Because of gravity and accel-
eration, they hit the vehicle surface more often which requires the
octree structure for a fast hit point calculation.

As can be seen in figure 9 our system allows particle traces to be
visualized as streaklines, ribbons, and glyphs. The ribbons show the
local rotation of the flow by calculating the Jacobian of the particle
velocity. The glyph is constructed as an arrow pointing into the
flow direction. The peak, the shaft and the stump can be colored
and scaled by different scalar parameters. Scaling the shaft by the
vorticity is a good example for scalar parameter mapping.

4

Implementation and measurement

probe interactions

The visualization system implemented in this project is based upon
SGI’s graphics API OpenGL Optimizer, which is available for SGI,
HP and Windows NT platforms. The underlying object oriented
Cosmo3D scene graph API offers several optimization techniques,
e.g. occlusion culling, polygon reduction and accelereated mov-
ing of picked objects. Thereby, Cosmo3D allows full access to the
graphical objects, including OpenGL-calls.

At the current project status user input is supported for a standard
2D mouse and for the DLR space mouse, which allows simultane-
ous input in six degrees of freedom in a precise manner. In the
future we plan to support tracking devices to run the application in
a CAVE or on large screen stereo projection walls. Using these in-
put devices the user can manipulate the position and orientation of
the view point or of one of the measurement probes.

Using measurement probes gives the user an intuitive and easy
way to analyze the data sets. The probes can be freely moved and
oriented to define the initial positions for particle traces or the orien-
tation of slices. Therefore, the shape of the probes can be expanded
in all three dimensions and the sample points are aligned on the
rake or inside the cube (see figure 6).

Figure 6: Freely movable measurement probes, as rake, slice and
cube.

In case of the slice measurement probe, planes can be colored by
the scalar value calculated at the sample points. Using the texture
hardware allows interactive visualization of isolines on the slices
(see figure 9). The deficit of slices is the restriction to two dimen-
sions. Direct volume rendering is an expensive way to get a three
dimensional presentation. To keep up with interactive rates, we ar-
ranged several slices in a cubical probe, avoiding the occlusion by
rendering a specific range of the scalar parameter by using trans-
parent textures. For example, in figure 8 the slices are colored by
the velocity norm and for large values the texture is transparent.

Thereby, we can see the shape of the vortex caused by the wheel
housing.

5 Results

The characteristic size parameters of a typical data set are presented
in table 1 with the corresponding vehicle surface containing 70.820
triangles (see figure 2). While a full cartesian grid of the finest
resolution would have about 60 million cells, the locally refined
grid has just about 3 million cells containing flow parameters. Note
again that not every cell in a refined region is divided into the un-
derlying VRIevel. The example data set can be visualized on a SGI
Octane SI with a R10000 175 MHz processor and 256 MB mem-
ory running under IRIX 6.5 using OpenGL Optimizer 1.2. Being a
typical workstation configuration in engineering environments we
consider this to be the target platform for our visualization system.

VRregion | VRlevel child dimensions cell size
regions of cells incm
0 2 1 309 44 69 5.0
1 1 2-8 287 80 125 2.5
2 0 - 87 72 49 1.25
3 0 - 87 72 49 1.25
4 0 - 43 71 189 1.25
5 0 - 191 125 189 1.25
6 0 - 111 67 189 1.25
7 0 - 87 72 49 1.25
8 0 - 87 72 49 1.25

Table 1: Grid structure of a typical example data set.

In table 2 the calculation time for 100 particle traces, each with
1000 steps, with and without geometry check is compared. The
time measurement includes the interpolation, integration and gen-
eration of the visualization geometry. The “worst case” for the al-
gorithm with geometry check is a trace near the vehicle surface with
a polygon intersection test for each step. For such a trace, we need
for 100 particles about 3.52 seconds with and 1.67 seconds without
geometry testing. The “best case” is a trace with no geometry in-
terferences at all, where the times are 2.12 seconds with and 1.66
seconds without surface test. This clearly shows the limited over-
head of geometry testing: while in the worst case we need about
twice the time the increase for the best case is only 27 percent. An
average particle exhibits an.intersection test in less than 30 percent
of the steps, so the average time for 100 particles traces is around 2
seconds. Keep in mind that all numbers are for 100 particles each
with 1000 calculated steps. Reducing the number of steps, e.g. by
using adaptive integration methods, speeds up the calculation. The
effect of the decreasing ratio for higher order integration schemes
is caused by the constant time for the geometry creation.

Order of trace near geometry trace in volume
Runge “worst case” “best case”
Kutta with | without | ratio | with | without | ratio
scheme | check | check check | check
2. 322 1.35 238 | 1.80 1.35 1.33
3. 3.56 1.72 207 | 216 1.69 1.27
4. 380 | 194 1.96 | 2.41 1.94 1.24

Table 2: Tracing and geometry generation time in seconds for 100
particles, each with 1000 calculated steps.

Using a probe with about 10 particle traces allows interactive
exploration of the given complex data set. The particle rake can be
positioned freely and intuitively with the space mouse and the traces
are updated instantaneously. For the engineers this a significant

progress compared to their previous plot-job oriented visualization
procedures. With respect to the slice probe a plane of the size of 70
x 70 points can be moved at interactive rates.

The most time consuming part in the visualization process is the
geometry refresh. The example model of 70.000 triangles can be
rendered with 8 frames per second on the described platform. Our
goal is to achieve frame rates of more than 10 by geometry opti-
mization like adapted tri-stripping and polygon reduction.

6 Conclusions and future work

Advanced simulation techniques like the Lattice Gas Automata
concept for CFD introduce complex new grid structures which re-
quire the modification of well-known visualization algorithms. We
have shown that careful adaption to the hierarchy of the locally re-
fined cartesian grids of EXA’s PowerFLOW solver allows particle
tracing with sets of lines, ribbons, and glyphs at interactive frame
rates. Special effort is required to avoid the penetration of parti-
cles into the car body, an aspect which is not relevant for geometry
adapted unstructured or curvilinear grids. Interactive manipulation
of probes for particle rakes or slice planes can be driven by space
mice attached to the graphics workstations or by pointing devices
in immersive visualization environments. In the future we plan to
implement other mapping techniques like LIC for depicting surface
flow and iso-surfaces representing scalar values like pressure and
temperature. Furthermore, we continue to improve rendering per-
formance by reducing and optimizing the car body geometry and
culling occluded parts. Ultimately, we head for the interactive ex-
ploration of time-dependent computations and the integration of our
visualization system into the development process of BMW,

7 Acknowledgment

This research is sponsored by the Bavarian Consortium for High
Performance Scientific Computing (FORTWIHR). We would like
to thank our project partners Dr. K. R. Traub, EXA Corp., and
Dr. Nolting, EXA GmbH, for fruitful discussions and their contin-

- uing support.

416

0-7803-5897-X/99/$10.00 _cOpyrigpi 1999 IEEE
References

[1] S. Bryson and C. Levit. The virtual windtunnel. In IEEE Com-
puter Graphics and Applications, 12(4):25-34, 1992.

[2] A. Glassner. An Introduction to Ray Tracing. Academic Press
London, 1989. :

[3] D. A. Lane. Scientific Visualization of Large-Scale Unsteady
Fluid Flows. In G. Nielson, H. Hagen, and H. Mueller, edi-
tors, Scientific Visualization, pages 125-145. IEEE Computer
Society, 1997.

[4] F.Post and T. van Walsum. Fluid Flow Visualization. In H. Ha-
gen, H. Mueller, and G. Nielson, editors, Focus on Scientific

Visualization, pages 1-40. Springer Berlin, 1997.

—

(s

—

"C. Teitzel, R. Grosso, and T. Ertl. Efficient and Reliable In-
tegration Methods for Particle Tracing in Unsteady Flows on
Discrete Meshes. In W. Lefer and M. Grave, editors, Visualiza-
tion in Scientific Computing '97, pages 31-41, Wien. Springer.

S.K. Ueng, C. Sikorski, and K.L. Ma. Efficient construc-
tion of streamlines, streamribbons and streamtubes on unstruc-
tured grids. IEEE Transactions on Visualization and Graphics,
2(2):100-109, June 1996.

[6]

[7]1 S.P. Uselton. exVis: Developing A Wind Tunnel Data Visual-
ization Tool. In R. Yagel and H. Hagen, editors, Proc. Visual-

ization '97. 1EEE, 1997.

Figure 7: The lighted triangles had to be checked for collision during the particle Figure 8: Freely movable slicing probe, using texture
trace calculation. hardware to visualize the shape of a vortex.

Figure 9: Particle trace visualization with streaklines, ribbons and glyphs. Isolines on the slice are visualized interactively by the texture
hardware.

Interactive Visualization of Fluid Dynamics Simulations in Locally Refined Cartesian Grids
Martin Schultz, Frank Recks, Wolf Bartelheimer, Thomas Ertl

553

